Direct evaluation of a mechanism for activation of the RecA nucleoprotein filament.

نویسندگان

  • Alberto I Roca
  • Scott F Singleton
چکیده

The RecA protein of Escherichia coli controls the SOS response for DNA damage tolerance and plays a crucial role in recombinational DNA repair. The formation of a RecA.ATP.ssDNA complex initiates all RecA activities, and yet this process is not understood at the molecular level. An analysis of RecA.DNA interactions was performed using both a mutant RecA protein containing a tryptophan (Trp) reporter and oligodeoxyribonucleotides (ODNs) containing a fluorescent guanine analogue, 6-methylisoxanthopterin (6MI). Experiments using fluorescent ODNs allowed structurally distinct nucleoprotein filaments, formed in the absence and presence of ATPgammaS (a slowly hydrolyzed analogue of ATP), to be differentiated directly. Stopped-flow spectrofluorometry, combined with presteady-state kinetic analyses, revealed unexpected differences in the rates of RecA.ODN and RecA.ATPgammaS.ODN complex assembly. This is the first demonstration that such intrinsically fluorescent synthetic DNAs can be used to characterize definitively the real-time assembly and activation of RecA.ssDNA complexes. Surprisingly, the ssDNA binding event is almost 50-fold slower in the presence of the activating ATPgammaS cofactor. Furthermore, a combination of time-dependent emission changes from 6MI and Trp allowed the first direct chemical test of whether an inactive filament can isomerize to the active state. The results revealed that, unlike the hexameric motor proteins, the inactive RecA filament cannot directly convert to the active state upon ATPgammaS binding. These results have implications for understanding how a coincidence of functions--an ATP-communicated signal-like activity and an ATP-driven motorlike activity--are resolved within a single protein molecule.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel property of the RecA nucleoprotein filament: activation of double- stranded DNA for strand exchange in trans.

RecA protein catalyzes DNA strand exchange, a basic step of homologous recombination. Upon binding to single-stranded DNA (ssDNA), RecA protein forms a helical nucleoprotein filament. Normally, this nucleoprotein filament binds double-stranded DNA (dsDNA) and promotes exchange of base pairs between this dsDNA and the homologous ssDNA that is contained within this filament. Here, we demonstrate ...

متن کامل

Mechanism of filament formation on ssDNA by RecA protein

RecA protein (RecA) forms a nucleoprotein filament composed of a helical protein array that binds to singlestranded DNA (ssDNA), which in its active form is then able to initiate various reactions. A series of studies to date suggest the following roles of the N-terminal domain on filament formation by RecA. 1) The N-terminal domain of RecA is the functional region for protein-protein interacti...

متن کامل

Assembly and disassembly of RecA protein filaments occur at opposite filament ends. Relationship to DNA strand exchange.

RecA protein primarily associates with and dissociates from opposite ends of nucleoprotein filaments formed on linear duplex DNA. RecA nucleoprotein filaments that are hydrolyzing ATP therefore engage in a dynamic process under some conditions that has some of the properties of treadmilling. We have also investigated whether the net polymerization of recA protein at one end of the filament and/...

متن کامل

Modulation of RecA nucleoprotein function by the mutagenic UmuD'C protein complex.

The RecA, UmuC, and UmuD' proteins are essential for error-prone, replicative bypass of DNA lesions. Normally, RecA protein mediates homologous pairing of DNA. We show that purified Umu(D')2C blocks this recombination function. Biosensor measurements establish that the mutagenic complex binds to the RecA nucleoprotein filament with a stoichiometry of one Umu(D')2C complex for every two RecA mon...

متن کامل

Complementation of one RecA protein point mutation by another. Evidence for trans catalysis of ATP hydrolysis.

The RecA residues Lys248 and Glu96 are closely opposed across the RecA subunit-subunit interface in some recent models of the RecA nucleoprotein filament. The K248R and E96D single mutant proteins of the Escherichia coli RecA protein each bind to DNA and form nucleoprotein filaments but do not hydrolyze ATP or dATP. A mixture of K248R and E96D single mutant proteins restores dATP hydrolysis to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 125 50  شماره 

صفحات  -

تاریخ انتشار 2003